University College London Department of Computer Science

Reputable List Curation from Decentralized Voting

Elizabeth C. Crites*, Mary Maller, Sarah Meiklejohn, Rebekah Mercer

PETS - July 2020

News / Canada

I Made My Shed the Top-Rated Restaurant on TripAdvisor

And then served customers frozen dinners on its opening night.

03 By Oobah Butler

December 6, 2017, 12:20pm

Applications:

- 1. Lists of good restaurants
- 2. New York Times News Provenance Project

Jerome Moore

A tropical storm just hit the Florida coast! Stay safe!

Image: NYT News Provenance Project www.newsprovenanceproject.com

- business interests, social relationships, and potential conflicts of the participants can skew voting
- retaliation or bribery

Token-curated registry (TCR):

Existing solutions:

1. ConSensys Partial-Lock-Commit-Reveal reveals votes in the clear

2. Enigma relies on trusted hardware

Requirements for voting:

- 1. Vote Secrecy
 - votes are not revealed
- 2. Dispute Freeness
 - · can verify if everyone is following the protocol
- 3. Self Tallying
 - tally can be computed by anyone

1. Formal cryptographic model for TCRs

2. First provably secure construction of a TCR

3. Implementation as smart contract on Ethereum

Token-curated registry (TCR):

Voting protocol of [HRZ10]:

Registration : $x \stackrel{\$}{\leftarrow} \mathbb{F}, c_0 \leftarrow g_0^x$ ZKP of x

Vote :

$$Y \leftarrow \prod_{0 \le i \le j, j < k \le m} c_{i,0} c_{k,0}^{-1}$$
$$c_2 \leftarrow g_1^{\text{vote}} Y^x$$
$$\mathsf{ZKP that vote} \in \{0,1\}$$

implementation on Ethereum [MSH17]

Self tallying:

Voter 1	Voter 2	Voter 3		
$c_{1,0} = g_0^{x_1}$	$c_{2,0} = g_0^{x_2}$	$c_{3,0} = g_0^{x_3}$		
$Y_1 = g_0^{-x_2} g_0^{-x_3}$	$Y_2 = g_0^{x_1} g_0^{-x_3}$	$Y_3 = g_0^{x_1} g_0^{x_2}$		
$Y_1^{x_1} = g_0^{x_1(-x_2 - x_3)}$	$Y_2^{x_2} = g_0^{x_2(x_1 - x_3)}$	$Y_3^{x_3} = g_0^{x_3(x_1 + x_2)}$		
Tally = $\prod_{i=1}^{3} c_{i:2} = \prod_{i=1}^{3} e^{\text{vote}_i} Y^{k_i} = e^{\sum_{i=1}^{3} \text{vote}_i}$ find by brute force				
$\mathbf{L} = \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L}$				

<u>Requirements (Hao et al.):</u>

1. Vote Secrecy X

- votes are not revealed
- 2. Dispute Freeness X
 - can verify if everyone is following the protocol

3. Self Tallying

tally can be computed by anyone

Our TCR construction:

Vote1 : $x \stackrel{\$}{\leftarrow} \mathbb{F}, (c_0, c_1) \leftarrow (g_0^x, g_1^{\text{vote}} h_0^x)$ $\pi_1 \leftarrow \text{Prove}(R_{\text{Vote1}}, c_0, x)$

Vote2 :

$$Y \leftarrow \prod_{1 \le i \le j, j < k \le m} c_{i,0} c_{k,0}^{-1}$$

$$c_2 \leftarrow g_1^{\text{vote}} Y^x$$

$$\pi_2 \leftarrow \text{Prove}(R_{\text{Vote2}}, (Y, \{c_i\}_{i=0}^2), (\text{vote}, x))$$

Our TCR construction:

Results:

Theorem: If (Prove, Verify) is a zero-knowledge argument of knowledge and the decisional Diffie-Hellman (DDH) assumption holds, then our construction satisfies vote secrecy and dispute freeness.

1. Vote Secrecy
 2. Dispute Freeness
 3. Self Tallying

Implementation on Ethereum:

• 256-bit primes & BN256 G1 curve

Stage	Time (µs)	Verification (gas)	Verification and tx (gas)	Verification and tx (USD)
Deposit	328	$38,\!659$	$60,\!507$	0.027
Update	328	$18,\!641$	$40,\!489$	0.018
Vote1	656	$58,\!677$	80,525	0.036
Vote2	3546	$130,\!696$	$156,\!192$	0.070
Total	4854	$246,\!673$	337,713	0.151

Future work:

- new proof techniques to make more efficient
- concurrency
 - new construction at eprint: 2020/709

Thank you!

contact: e.crites@ucl.ac.uk